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Abstract

A numerical model based on smoothed particle hydrodynamics (SPH) has been developed and used to simulate the

classical two-dimensional Rayleigh–Taylor instability and three-dimensional miscible flow in fracture apertures with

complex geometries. To model miscible flow fluid particles with variable, composition dependent, masses were used.

By basing the SPH equations on the particle number density artificial surface tension effects were avoided. The simu-

lation results for the growth of a single perturbation driven by the Rayleigh–Taylor instability compare well with

numerical results obtained by Fournier et al., and the growth of a perturbation with time can be represented quite well

by a second-degree polynomial, in accord with the linear stability analysis of Duff et al. The dispersion coefficient found

from SPH simulation of flow and diffusion in an ideal fracture was in excellent agreement with the value predicted by

the theory of Taylor and Aris. The simulations of miscible flow in fracture apertures can be used to determination dis-

persion coefficients for transport in fractured media – a parameter used in large-scale simulations of contaminant

transport.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Miscible flow is a common and important phenomenon encountered in many areas of natural science

and technology. Under the influence of gravity, the miscible flow of fluids with sufficiently large density
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ratios may become unstable, a process known as the Rayleigh–Taylor instability [1]. Examples of the

Rayleigh–Taylor instability include supernova explosions [2], fire propagation in vertical shafts [3] and

contaminant transport in porous media [4].

In a miscible flow, a single fluid phase is present but its composition and properties (e.g., density, chem-

ical composition and temperature) vary in space. The fluid may be composed of two miscible fluids or a
solute non-uniformly dissolved in a liquid [5]. The miscible flow of two fluids such as salty water and fresh

water having a single fluid phase but different solute concentrations is addressed in this work. Miscible flow

is governed by a combination of momentum and mass conservation equations that describe the flow of the

fluid phase and a convection-diffusion equation describing the change of concentration in the fluid phase.

When Rayleigh–Taylor or other instabilities develop it may be difficult to use standard grid-based methods

to model miscible flow since the domains occupied by miscible fluids have very complex constantly chang-

ing geometries. Under these conditions, grid-based numerical methods often result in artificial numerical

diffusion, the violation of mass conservation and grid entanglement. An alternative approach is to use par-
ticles to represent the fluids.

In this paper, a numerical model based on smoothed particle hydrodynamics (SPH) is used to simulate

miscible flow. The application of the model to the classical two-dimensional Rayleigh–Taylor instability

(the instability that develops when a layer of dense fluid lies initially above a layer of less dense fluid)

and three-dimensional miscible flow in fracture apertures with complex geometries is described. Miscible

flow in fractures plays an important role in the migration of contaminants in the subsurface. Flow in

the shallow subsurface is often dominated by flow in fractures, and this may play an important role in

the transport of dissolved contaminants in groundwater and the intrusion of seawater into aquifers.
SPH is an interpolation-based numerical technique that can be used to solve systems of partial differen-

tial equations. The Lagrangian particle nature of SPH allows physical and chemical effects to be incorpo-

rated into the modeling of flow processes with relatively little code-development effort. In addition,

geometrically complex and/or dynamic boundaries and interfaces can be handled without undue difficulty.

SPH was first introduced by Lucy [6] and Gingold and Monaghan [7] to simulate fluid dynamics in the con-

text of astrophysical applications. Since its introduction, SPH has been successfully used to model a wide

range of fluid flow processes and the behavior of solids subjected to large deformations. For example, Liu

et al. [8] applied SPH to simulate high energy impacts and explosions, Monaghan [9] used SPH to model the
collapse of dams, Morris, Fox and Zhu [10] extended SPH to model low Reynolds number flows, Zhu, Fox

and Morris [11] applied SPH to study pore-scale flow, and Zhu and Fox [12,13] used SPH to model pore

scale diffusion and dispersion.

Hoover [14] and Colagrossi and Landrini [15] used SPH to model the immiscible flow of two fluids and

found that the standard SPH formulation of Gingold and Monaghan [7] creates artificial surface tension on

the boundary between the two fluids. In this paper, we propose a modified form of the SPH flow equations

that eliminates artificial surface tension. A combination of the modified SPH flow equation with an SPH

advection-diffusion equation similar to that derived by Zhu and Fox [12,13] allows miscible flow to be real-
istically modeled.
2. SPH equations

In SPH, the fluid is represented by a discrete set of N particles. The position of the ith particles is denoted

by the vector ri, i = 1, . . ., N. SPH theory is based on the idea that a smoothed representation AS(r) of the

continuous function A(r) at position r can be found from:
ASðrÞ ¼
Z

Aðr0ÞW ðr� r0; hÞdr0; ð1Þ
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where h is the support scale of the weighting function W, which satisfies the normalization condition
Z
W ðr� r0; hÞdr0 ¼ 1; ð2Þ
and the integration is performed over the entire space of the field. In the h ! 0 limit, the weighting function

W becomes a Dirac delta function and AS(r)! A(r).
In standard SPH, the properties associated with any particle i are calculated by approximating the inte-

gral in (1) by the sum
Ai ¼ umjDV jAjW ðri � rj; hÞ ¼
X
j

mj
Aj

qj
W ðri � rj; hÞ; ð3Þ
where DVj is the volume of fluid associated with particle j, and mj and qj are the mass and density of the jth

particle. In this equation, Aj is the value of A at particle j, and the summation is performed over all of the

particles. Similarly, the gradient of A is calculated from
rAi ¼
X
j

mj
Aj

qj
riW ðri � rj; hÞ; ð4Þ
and the magnitude of the field A at position r is approximated by
AðrÞ ¼
X
j

mj
Aj

qj
W ðr� rj; hÞ: ð5Þ
In Eq. (3), mi/qi can be replaced by the particle number density ni, and Eq. (3) can be replaced by
Ai ¼
X
j

Aj

nj
W ðri � rj; hÞ; ð6Þ
where ni has units of (L
�3) and satisfies
niDV i � 1: ð7Þ

The particle number density calculated from (6) is
ni ¼
X
j

W ðri � rj; hÞ; ð8Þ
and the mass density qi obtained from (5) is
qi ¼
X
j

miW ðri � rj; hÞ: ð9Þ
Similarly, gradients are calculated from
rAi ¼
X
j

Aj

nj
riW ðri � rj; hÞ: ð10Þ
The motion of each particle is governed by momentum and mass (or particle number) conservation prin-

ciples described by the Navier–Stokes equations. In standard SPH, expressions (3) and (4) are used to

approximate the fields and spatial derivatives that enter into the Navier–Stokes equations, while in this

work we use expressions (6) and (10). For simple one-phase flow, when all the particles are assumed to have

the same time invariant mass, the same results are obtained using either n or q in the SPH equations. For

multiphase flows and miscible multicomponent flows, such as the flow of fresh and salt water, it is impor-

tant to distinguish between the mass and particle densities.
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In miscible flows, the velocity field is governed by a momentum conservation equation with the form
dðmiðt;CÞviðtÞÞ
dt

¼ ð�rP iðtÞ þ liðCÞr2viðtÞÞV iðt; qiÞ þ miðt;CÞg ð11Þ
coupled with a convection-diffusion equation [13]
dCiðtÞ
dt

¼ Dðr2CðtÞÞi: ð12Þ
Here, v is the fluid velocity vector, P is the pressure, g is the gravitational acceleration vector, and l is the

dynamic viscosity of the solution, which generally depends on the solute concentration. In Eq. (11) the mass

mi of particle i depends on the solute concentration (or more generally on the composition of the fluid).

For salt solutions, the fluid volume does not increase significantly when the salt is added, and the density
depends approximately linearly on the salt concentration, providing the concentration is not too high. In

this work, a simple linear relationship between solution density and solute concentration was used, and this

can be represented by the relationship
mi ¼ mf
i þ kCi; ð13Þ
between the mass mi carried by particle i in the SPH model and the solute concentration Ci where k is a

constant and mf
i is the mass of the solvent carried by each particle. Under these conditions, the number den-

sity of the fluid is independent of the fluid composition.

Using the equivalence between the volume associated with a particle and the reciprocal of the number

density (Eq. (7)), the momentum conservation equation can be rewritten as
dðmiðt;CÞviðtÞÞ
dt

¼ � 1

ni
rP iðtÞ þ

liðCÞ
ni

r2viðtÞ þ miðt;CÞg: ð14Þ
In SPH, with particles of constant mass, the momentum conservation equation is
dviðtÞ
dt

¼ � 1

qi
rP iðtÞ þ

li

qi
r2viðtÞ þ g ð15Þ
and the most common SPH approximation of this equation is
dvi

dt
¼ �

X
j

mj
P j

q2
j
þ P i

q2
i

 !
riW ðri � rj; hÞ þ

X
j

mj
ðli þ ljÞðvi � vjÞ
qiqjðri � rjÞ2

ðri � rjÞriW ðri � rj; hÞ þ g: ð16Þ
The SPH approximation for the pressure gradient was derived by Gingold and Monaghan [6] and the

SPH approximation for the viscous force was proposed by Morris et al. [10].

For the modified SPH model with particle masses which depend on the fluid composition, the change of

momentum for particle i can be written as
dðmiviÞ
dt

¼ Fi; ð17Þ
where Fi is the total force acting on the particle i. This leads to the SPH equation
Fi ¼ �
X
j

P j

n2j
þ P i

n2i

 !
riW ðri � rj; hÞ þ

X
j

ðli þ ljÞðvi � vjÞ
ninjðri � rjÞ2

ðri � rjÞriW ðri � rj; hÞ þ mig: ð18Þ
By analogy, the convection-diffusion equation can be written in the form [11]
dCi

dt
¼
X
j

ðDini þ DjnjÞðCi � CjÞ
ninjðri � rjÞ2

ðri � rjÞriW ðri � rj; hÞ: ð19Þ
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These equations are coupled because the particle mass that appears in the momentum conservation equa-

tion changes as a consequence of diffusion. In general, both the viscosity and the relationship between the

pressure and the number density also depend on the fluid composition, and hence they are influenced by

diffusion. However, we assumed that both the fluid viscosity and the equation of state are independent

of composition for the sake of simplicity. Because of their symmetric forms, Eqs. (8) and (17)–(19) conserve
mass and linear momentum exactly.

At each time step in a simulation, the particle number densities, ni, at each of the particles are calculated

using Eq. (8) and the pressure at each particle is obtained using the equation of state
P ¼ P eq

ni
neq

: ð20Þ
Then the right hand side of Eq. (19) is evaluated and new concentrations are found.

The forces acting on each particle are found from Eq. (18), and new particle velocities and particle posi-

tions are found by time integration using the explicit ‘‘velocity Verlet’’ algorithm [16], which takes the form
riðt þ DtÞ ¼ riðtÞ þ DtviðtÞ þ 0:5Dt2F iðtÞ=miðtÞ;

Ciðt þ DtÞ ¼ CiðtÞ þ 0:5Dt
dCiðtÞ
dt

þ dCiðt þ DtÞ
dt

� �� �
;

miðt þ DtÞ ¼ mf
i þ kCiðt þ DtÞ

ð21Þ
and
viðt þ DtÞ ¼ miðtÞviðtÞ þ 0:5Dt FiðtÞ þ Fiðt þ DtÞf g½ �=miðt þ DtÞ: ð22Þ

To obtain a stable solution, the time step, Dt, should satisfy the conditions
Dt 6 0:25h=3c; Dt 6 0:25min
i
ðh=3 j Fi j Þ1=2 and Dt 6 min

i
ðqih

2=9liÞ;
where jFij is the magnitude of the force Fi [10].

A variety of forms, including spline functions of different order, have been used for the weighting func-
tions. The fourth-order weighting function [11]
W ðr; hÞ ¼ a

3� 3jrj
h

� �5
� 6 2� 3jrj

h

� �5
þ 15 1� 3jrj

h

� �5
0 6j r j< h=3;

3� 3jrj
h

� �5
� 6 2� 3jrj

h

� �5
h=3 6j r j< 2h=3;

3� 3jrj
h

� �5
2h=3 6j r j< h;

0 h <j r j;

8>>>>>>>><
>>>>>>>>:

ð23Þ
where a ¼ 63
478ph2

and a ¼ 81
359ph3

in two and three spatial dimensions, was used in this work.
The SPH approximation of the pressure gradient in (18) is based on (6), and it does not depend on the

mass and density of the particle, while the original formulation of Gingold and Monaghan [7] in (16) was

based on mass density and expressed in terms of m and q,
rP i

qi
¼ �

X
j

mj
P j

q2
j
þ P i

q2
i

 !
riW ðri � rj; hÞ: ð24Þ
It was shown by Hoover [14] that, for two-phase flow, approximation of the effects of a pressure gradient

on particle velocities using Eq. (24) creates an artificial surface tension due to the jump in density at the

interface between the two fluids. If the SPH formulation is based on a particle number density, which does

not jump at the interface, the resulting particle equation of motion, (17) and (18), does not generated an



Fig. 1. Behavior of two fluids with different densities modeled with standard and modified SPH equations. (a) Initially square drop of

fluid one surrounded by fluid two. (b) Standard SPH equations produce artificial surface tension resulting in transformation of the

square drop into a circular drop. (c) Modified SPH equations do not create artificial surface tension, and the square shape of the fluid

drop does not change.
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artificial surface tension. To illustrate the difference between standard SPH and the formulation based on

the number density, the behavior of an initially square droplet (at time t = 0, Fig. 1(a)) composed of fluid 1

surrounded by fluid 2 was simulated. Periodical boundary conditions were used in all directions. In this

simulation, a diffusion coefficient of D = 0, was used, fluid 1 was 5 times less dense than fluid 2, and the

gravitational field was set to zero. To start the simulations, particles of equal unit solvent mass and zero

concentration were placed randomly into an 8 by 8 (in units of h) domain with an equilibrium particle den-

sity of neq = 36h�2 (36 particles in an area of h2). Then SPH equations (8), (17) and (20) were used to bring

the system to an equilibrium state. In the absence of molecular diffusion (D = 0) the masses of particles do
not change with time and Eqs. (17) and (18) can be written as
dvi

dt
¼ � 1

mi

X
j

P j

n2j
þ P i

n2i

 !
riW ðri � rj; hÞ þ

1

mi

X
j

ðli þ ljÞðvi � vjÞ
ninjðri � rjÞ2

ðri � rjÞriW ðri � rj; hÞ þ g: ð25Þ
For single phase flow (all particles have equal constant masses) the standard and modified SPH equa-

tions are equivalent. Peq in the equation of state (20) was set to 144. When the system reached equilibrium

the concentration of fluid 2 particles (indicated by a black color in Fig. 1(a)) was increased from zero to 8.

With k = 0.5 in Eq. (13) this results in a mass of mi = 5 for the fluid 2 particles, while the mass of fluid 1

particles remained unity. A simulation carried out using the standard SPH equations (9) and (16) resulted

in the formation of a circular droplet as a result of the artificial surface tension (Fig. 1(b)). The equation of
state used in this simulation was Pi = ql/(mineq) obtained from the equation of state (20) by multiplying and

dividing the right hand site of (20) with mi. When the modified SPH equations (8), (17) and (20) were used

to simulate the two fluid system, the initially square droplet remained unchanged (Fig. 1(c)). This indicates

that the modified SPH equations, based on the particle number density, do not generate artificial surface

tension. This is particularly important for miscible flow simulations in which surface tension is not present.
3. Two-dimensional simulation of the Rayleigh–Taylor instability

In this section, the behavior of a layer of heavy fluid (salt water, for example) positioned above a layer of

a light fluid (fresh water, for example) with an initially flat horizontal interface is addressed. Impermeable

no-slip boundary conditions were used at the lower boundary of the computational domain, and periodic

boundaries were used in the lateral directions (material leaving the right boundary enters at the left and

vise-versa). Using the modified SPH equations described above, diffusion coupled with flow induced by
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the action of gravity on the density variations in the fluid mixture was simulated. Fig. 2 shows the effect of

the diffusion coefficient D on the development of the Rayleigh–Taylor instability. The size of the domain is

16 by 8 in units of the range, h, of the weighting function, and the equilibrium particle density was
Fig. 2. Development of a two dimensional Rayleigh–Taylor instability with dimensionless time t as a function of the diffusion

coefficient D. The solute concentration decreases from C = 4 (black) to zero concentration (light gray). The darker gray particles at the

bottom are used to model the impermeable boundary.
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neq = 36h�2 (36 particles in an area of h2). The coefficient Peq in the barotropic (athermal) ideal gas equation

of state was Peq = 144 and the viscosity was l = 6. The initial solute concentration in the heavy fluid was set

to C = 4 and the concentration of solute in the light fluid was C = 0. The coefficient k in expression (13) was

k = 0.5, and the mass of solvent carried by each particle, mf
i , was equal to unity. Consequently, the density

ratio between the heavy and light fluids was 3.0, (1 + 4 · 0.5). The dimensionless acceleration due to gravity
was assigned a value of g = 0.005. In an experiment, small deviations from an ideal horizontal interface

would be unavoidable. To initiate the Rayleigh–Taylor instability in the SPH simulations, the interface be-

tween the two layers was perturbed from y(x) = y0 to y = y0 + sin(px/8). In Fig. 2, the concentration Ci of

the solute associated with the particles is indicated by a gray scale ranging from white for pure solvent to

black for the highest solute concentration (C = 4). The dark gray particles at the bottom of the computa-

tional domain were used to model the impermeable lower boundary. The sinusoidal perturbation of the

front grows initially into a rounded finger. As the heavy fluid accelerates downward and light fluid rises

up, a Helmholtz instability develops resulting in velocity vortices, and an inverted mushroom like pattern
develops. The vortices associated with the formation of an inverted mushroom shaped pattern are illus-

trated by the fluid velocity field shown in Fig. 3.

It can be seen that diffusion decreases the instabilities. In the absence of diffusion, a sharp interface

between the high density and low density fluids is maintained, and the effects of gravity acting on density

variations are not reduced by diffusion. As diffusion increases, the interface broadens and the instability

becomes weaker. Results similar to those shown in Fig. 2 at a dimensionless time of T = 560 were reported

by Fournier et al. [17] who used a spectral method to solve the two-dimensional Navier–Stokes and advec-

tive-diffusion equations (they did not report results for later times). In the absence of molecular diffusion,
the SPH simulation results closely resemble those obtained by Lattice-Boltzmann simulations [18].
Fig. 3. Velocity field during two dimensional Rayleigh–Taylor instability at dimensional time t = 400. Diffusion coefficient D = 0.0001.



Fig. 4. Growth of the perturbation amplitude (in units of h) resulting from a two-dimensional Rayleigh–Taylor instability with

dimensionless time as a function of the dimensionless diffusion coefficient D.

Fig. 5. Comparison of perturbation amplitude growth with the second degree polynomial growth predicted by Duff�s heuristic

dispersion law for different dimensionless diffusion coefficients D.
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Fig. 4 shows the growth of the perturbation amplitudes as a function of time for the miscible displace-

ments described above with three different diffusion coefficients. At early times, the initial sinusoidal

perturbation is reshaped into an essentially constant form, which then grows as the square of time, in agree-

ment with the heuristic dispersion law obtained by Duff et al. [19] from a linear stability analysis. Fig. 5

shows part of Fig. 4 for the time interval t = 100 to t = 500. It can be seen that over this time interval

the growth of the amplitude A can be represented by a second order polynomial A = A0 + A1t + A2t
2

(the form of the polynomials is displayed in the low right corner of Fig. 5).
4. Miscible flow in fractures

To simulate miscible flow in three-dimensional fractures the aperture geometry was generated from self-

affine fractal surfaces. The fractal model is based on extensive observations that the fracture surfaces of
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brittle materials, including rocks [20], have a self-affine fractal geometry [21,22], which can be characterized

by a Hurst exponent with a more or less material independent (quasi-universal) value of about 0.75 [23,24].

The fracture aperture was simulated as the gap between a self-affine surface with a Hurst exponent of 0.7

and a replica of the surface, which was translated both horizontally and vertically, without rotation and

with periodic boundaries in the directions parallel to the plane of the fracture. Fig. 6 shows the resulting
fracture aperture field that ranges from 0 to 3.75h (with a gray scale ranging from white for the minimum

aperture size to black for the maximum aperture) and the geometry of the fracture walls. The fracture size

in the lateral directions (parallel to the plane of the fracture) was 16 · 16 in units of h (Fig. 7) and the

(vertical) thickness of the computational domain was 16h.

Interactions with the boundaries of the fracture were modeled using �boundary� particles that are immo-

bile but were included in the calculation of the total force acting on the fluid particles in Eqs. (17) and (19).

Periodic boundary conditions were used in the x and y directions, parallel to the plane of the fracture. Ini-

tially particles were placed randomly in a 16 · 16 · 16 box, and then the SPH equation of motion with zero
gravitational acceleration was used to relax the system. Once the particles reached an equilibrium distribu-

tion, the fracture geometry was imposed on the particle system. The particles outside of the fracture aper-

ture, within a distance h from the self-affine surfaces, were �frozen� and labeled as boundary particles

creating the fracture walls. The particles inside the fracture were left to represent the fluid and the particles

outside of the fracture walls were then removed. The flow was initiated by applying a gravitational
Fig. 6. Aperture size distribution (left) and geometry of a fracture walls (right). The gray scale ranges from white for the minimum

aperture of zero to black for the maximum aperture of 3.75 in units of h.

Fig. 7. Sketch of the fracture. Gravity acts in the x-direction.



Fig. 8. Miscible flow in the fracture. The x–z cross-section and the x–y top view are shown at three different dimensionless times, t, for

three different dimensionless diffusion coefficients, D. In the cross-section the small particles denote the fluid particles with non-zero

solute concentration. The value of the concentration is denoted by the gray scale with black corresponding to the maximum solute

concentration C = 4 and white to zero solute concentration. The larger gray particles are used to model impermeable fracture walls.

The top view shows the concentration averaged over the plane of the fracture.
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acceleration of g = 0.01 in direction x and periodic flow boundary conditions in directions x and y. The

volume of the fracture aperture was 709h3 the equilibrium particle number density, neq, was 36 particles

h�3 and the total number of mobile particles representing the fluid was 25,513.

Once a steady state flow of fluid representing the solvent was achieved, the time was set to zero and

�solute� was added to form a dense solution in a narrow zone spanning the fracture aperture near the
�entrance� to the fracture. The concentration of the solute outside the solution zone was set to zero and in-

side the solution zone the solute concentration was set to C = 4. With k = 0.5 this creates a density ratio of 3

between the initial solution zone and the pure solvent. The equilibrium pressure, Peq, was assigned a value

of 144 and a viscosity of l = 3 was used.

Fig. 8 shows the migration and diffusion of the solute in the fracture aperture for three different diffusion

coefficients. Cross-sections in the direction of flow and a view of the solute concentration field averaged

over the width of the fracture are shown at three different times. The values of the solute concentration

are denoted by a gray scale ranging from white corresponding to pure solvent (concentration of solute
C = 0) to black for the maximum solute concentration of 4. The cross-sections show SPH particles with

different solute concentrations while the top view presents solute concentrations calculated using the

weighting function according to expression (6). Fig. 9 shows how the distance between the leading edge

of the 0.075 concentration isopleth and the entrance of the aperture increases with time for three different

diffusion coefficients.

The solute plume reaches the end of the fracture at approximately the same time for all three diffusion

coefficients. As might be expected, the spreading of the contaminated zone in the direction perpendicular to

flow increases with increasing diffusion coefficient.
The SPH simulations can be used to estimate the dispersion coefficient of the fracture resulting from

molecular diffusion and the non-uniform fluid velocity. The migration of solute in an ideal fracture consist-

ing of two parallel plates was simulated (Fig. 10) to evaluate the accuracy of the SPH simulations by com-

parison with analytical results. A two-dimensional fracture with an aperture width of W = 14 in units h was

filled with fluid with zero solute concentration, and a gravitational acceleration of g = 0.001 was applied in

the direction of flow. An equilibrium particle density, neq, of 49 particles h�2 was used, the viscosity was set

to l = 8, and periodic flow boundary conditions were used in the direction of flow. After the fluid velocity

field in the fracture reached steady state, solute with a concentration of C = 4 was placed at the entrance of
the fracture. In Eq. (13) mf

i was set to unity and k was set to zero to give a constant uniform particle mass

and a solution density independent of the solute concentration. Under steady-state flow conditions the dis-

tribution of solute averaged over the fracture aperture eventually reaches a Gaussian distribution with a

variance r2 that increases linearly with time [5]. The growth of the variance is a result of the combined
Fig. 9. Distance between the leading edge of the 0.075 concentration isopleth in the plume and the entrance of the aperture as a

function of time and diffusion coefficient D.



Fig. 10. Two-dimensional simulation of Taylor–Aris dispersion, steady-state flow and transport between parallel plates. Gray scale

denotes concentration distribution with black corresponding to maximum concentration and white to the zero solute concentration.

Fig. 11. Variance of concentration profile as a function of time obtained from numerical simulations (denoted by diamond symbols)

and a linear fit (solid line).
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effects of diffusion and advection, and the effective diffusion coefficient, known as the dispersion coefficient

D*, is larger than the true diffusion coefficient and is given by [25]
D� ¼ 0:5 dðr2Þ=dt: ð26Þ

According to the theory of Taylor and Aris [26] the dispersion coefficient for steady-state laminar flow

between two parallel plates is given by
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D� ¼ Dð1þ Pe2=210Þ; ð27Þ

where Pe = Wu/D is a Peclet number and u = qgW2/12l is the average velocity.

Fig. 11 shows that the variance of the solute concentration profile, r2, obtained from the simulations

increases linearly with time with a slope of 0.399 corresponding to a dispersion coefficient of

D* = 0.1995 compared with a value of D* = 0.203 predicted by the theory of Taylor and Aris [26].
5. Conclusion

The SPH method was modified and coupled with the advection diffusion equation to simulate the flow of

miscible fluids. The model was tested by simulating the Rayleigh–Taylor instability and Taylor dispersion.

According to the SPH simulation results, the Rayleigh–Taylor instability (the rate of perturbation growth)

decreases with increasing diffusion coefficient. The results for a single perturbation compare well with those

obtained by Fournier et al. [17], and the growth of the amplitude of the perturbation with time can be fitted
fairly well by a second-degree polynomial in accord with the linear stability analysis of Duff et al. [18]. The

dispersion coefficient found from SPH simulation of flow and diffusion in ideal fracture was in excellent

agreement with the value predicted by the Taylor–Aris theory [26]. The SPH model was used to model

three-dimensional miscible flow and transport in a fracture with complex geometry, and we are planning

to use this model in future work for determination the dispersion coefficient of fractured media, a param-

eter used for large (field) scale simulating of contaminant transport.
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